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Receied July 27, 1998
Revised Manuscript Receed September 1, 1998  Expressions 2 and 3 represent the P and N peaks of the cross-
peak multiplet component which is low-field in th&N dimension
The TROSY experimefthas been shown to increase the and high-field in théH dimension. Recording the P- and N-type
sensitivity of 'H—""N and *H—'C correlation experiments by  signal for each; value of the 2D experiment allows a phase-
selecting the multiplet component which relaxes most slowly due sensitive representation of the spectrtim.
to cross-correlation between dipeldipole and chemical shift Since the PFGs provide coherence order selection, a single scan
anisotropy relaxatioft. This enhancement is most pronounced per FID is sufficient to record a clean spectrum (Figure 2). If
for slowly tumbling macromolecules at high magnetic field thelH pulses of the initial INEPT sequence are not phase-cycled,
strength'™ As in sensitivity-enhanced HSQC experimehtse the steady-statéN magnetization contributes to the signal
TROSY experiment can be conducted in a way where all of the intensity, too® The phase settings of Figure 1 ensure the
magnetization components precessing during the evolution time constructive interference with the narrow low-fiefiN doublet
t; are turned into observable magnetization, increasing the component.
sensitivity by\/i compared to the original experimentThis Since the pulse sequence element of Figure 1a does not require
sensitivity-enhancement scheme requires the separate storage gfhase cycling, it is a convenient building block in multidimen-
at least 4 scans per; value and some nonstandard data sional NMR experiments. We have tested implementations in a
rearrangement before Fourier transformation. Here a gradient-3D HNHB (Figure 1b) and a 3D HNCA experiment (Figure 1c).
enhanced version of the TROSY experiment is presented whichIn the original HNHB experiment, magnetization is transferred
achieves the sensitivity-enhancement with a single scan per FIDfrom the amide nitrogen to the MHprotons during a long
(two scans pet; value), and thus, it is an attractive building block ~dephasing delay, typically 38 nisSince the’Ju; coupling is at
for 3D and 4D NMR as well as for amide proton-exchange most about 5 Hz, a longer coupling evolution delay would be
experiments. Data processing is identical to that of establishedadvantageous. The HNHB experiment of Figure 1b uses selective
echo-antiecho experiments. pulses to excite the ¢d and H3 resonances and a selective
Figure 1a shows the pulse sequence of the sensitivity- and Nversion pulse to refocus tHéuns couplings during the constant

gradient-enhance#N TROSY experiment¥N SG-TROSY) time evolution period. Since these pulses do not disturb the spin-
Compared to the original TROSY pulse sequehaelSO(lSN). state of the amide protons, the slowly and rapidly relaxing doublet
and a 180(*H) pulse with delays) ande have been added to ~ COMPonents of the nitrogen spins are ant interchanged. The
accommodate the pulsed field gradients (PFG) for coherence ordelf‘rllo"vly _rela:mtwg corlnp;)_nent |shtransferrted tebfmagnetlzatlon b}&
selection. Any of the four different multiplet components of a € spin-stale selective conerence transier sequence. As an
I5N—1H cross-peak can be selected by different initial settings of 2dditional benefit of spin-state selectivity, passi¥g, couplings

. during the dephasing delayl, no longer interfere with the
the phaseg; and¢,,® while signals from NH and NH; groups S . o
are suppressed. Starting from proton magnetization ,Ha magnetization transfér.The intensities of the HNHB cross-peaks

descrpton i erms o Canesian poduct operagilas e 0 PPOIIOTS, 1 SO TS O ee s
following terms by the end of the evolution peritd P piing 9

delay, 2, and the adiabatic inversion pul¥e.To evaluate the
33w coupling constants quantitatively, a reference 2D experiment
cospty)cos(@dnt)2NH, + can be recorde#, omitting the selective 9§'H) pulses and the
Sin(thl)cos(erHNtl)zNsz + Cos@Ntl)sin(ﬂJHNtl)Ny — corresponding phase cycle of the receiver phase. In this reference
. . experimentt; can be incremented together with the delayso
sin(yty)sinEdynt)N, (1) that the maximunt; + t, value is identical to that of the 3D
experiment.

This magnetization is defocused by .the gradlgaIsAII term.s (8) Because of the different signs of the one-bdpg andJyc couplings,
are transferred to observaldld magnetization by the following  the phase of the first or second®9@H) pulse must be inverted to obtain
pulse sequence.The gradieng, refocuses théH magnetization, constructive interference in'8C TROSY experiment (ref 3). Yet, the same

; : o sign combination inp1, ¢, andg; selects the same multiplet component in
leading to the following terms before detection: both dimensions iF*C SG-TROSY as if®N SG-TROSY. The phase cycle
given in ref 5 eliminates the contribution of tF& equilibrium magnetization;

* Tel: 46-8-728-6799. Fax: 46-8-33-52-96. E-mail: Johan.Weigelt@mbb.ki.se. including the>N stead%/-state magnetization would increase the sensitivity
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Figure 1. Pulse schemes with spin-state selective-, sensitivity-, and
gradient-enhance®N—1H magnetization transfer. Filled (open) pulses
are applied with flip angles of 9q180C). Bell-shaped pulses are selective.
Pulse phases areunless indicated otherwise. P- and N-type signals of
the most slowly relaxing cross-peak component is selectedgwiii =

y/x and PFG signs as indicated (P-peak), and wittp, = —y/—x and
inverted sign of the PFGg: (N-peak). PFGs are applied with a duration
of 1 ms and a sine-bell-shaped envelope.lff) SG-TROSY. Param-
eters: e = § = 1.4 ms (PFG duratior- recovery delay)r = 1/(4'Jnn)

0.5 G/cm. The phase of the first 9¢*N) pulse may be phase-alternated
together with the receiver phase. Axial peak artifacts are shifted to the
side of the spectrum by inverting the phases of'@l pulses before;

and the receiver phase with eathincrement. The pulse sequence
provides water flip-back. For enhanced water suppression, the last 180
(*H) pulse is implemented as a-8—19 pulse'®> With magic angle PFGY,
acceptable water suppression was also obtained with a hafdplLi&e&

as the lastH pulse. This requires, in addition, phase inversion of the
last two 90 (*H) pulses to maintain the water flip-back effét(b) HNHB
experiment with spin-state selection. Thepulses immediately preceding
and followingt; are 1.6 ms E-BURP-2 and time reversed E-BURP-2
pulses, respectivelif. The 180 (*H) pulse, labeled HS, is a hyperbolic
secant pulsé of 3.4 ms duration. The deldycan be adjusted for optimum
sensitivity and is typically 3670 ms. PFGs as in (a), except thpt=

10 G/cm. Phase cyclep: =y, —y; 12 = 2(X), 2(—X); 3 = 4(X), 4(—X);
receiver= x, —X, —X, X. (c) HNCA experiment with spin-state selection.
Selective 90 (*H) pulses are 2 ms long and applied to the water resonance.
A 12.5-kHz RF field was used for WALTZ decouplin@.= 12.8 ms.
PFGs as in (b), except thgs . = 5, 8 G/cm. Phase cyclep; = X, —X;

P2 =2(X), 2(—X); 3 = 4(X), 4(—X); ya = 8(X), 8(—X); receiver= X, —X,

=X, X, =X, X, X, —X.

The HNCA pulse sequence of Figure 1c was derived from the
experiment by Grzesiek and B&&.To minimize relaxation of
the Gu spins during, the proton magnetization is flipped to the
x-axis, spin-locked during; and flipped back to thez-axis

afterward. The spin-state of the amide protons is preserved during

the first two delaysT, restored after;, and again preserved during
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Figure 2. 15N SG-TROSY spectrum of a 0.7 mM sample %#/13C/
15N-labeled N-terminal domain d@. coli DnaB DnaB(1-161%° recorded

at 32°C and pH 7.5 on a Bruker DMX 600 NMR spectrometer using the
scheme of Figure 1a, except that an adiabatic 18C) inversion pulse
was applied in the middle of; to refocus!>N—13C couplings. The
spectrum was recorded in 8 min withnax (tzmay Of 65 (114) ms (1024
(t2)*200 (t1) complex points), using one scan per FID. Average amplitudes
were 1.5+ 0.2 higher than in a standard FHSQC experinféand 1.05

+ 0.1 higher than in a corresponding sensitivity-enhanced HSQC
experiment with WATERGATE and a selective water flip-back pulse
preceding the pulse sequeri¢é>22For this protein sample = 14 ns

as determined from®®N T; and T, relaxation measurements.

the following constant time evolution period. In this way, the
most slowly relaxing®>N doublet component is maintained
throughout most of the pulse sequence.

The experimental schemes of Figure 1b and 1c were tested at
600 MHz 'H frequency with a 2.3 mM sample dfN-labeled
Escherichia coliDnaB(24-136) at 32C and pH 7.5. With this
sample, for which a rotational correlation timg, of 10 ns was
determined from*N T, and T, relaxation time$3 the HNHB
experiment showed maximum sensitivity Bt= 50 ms. Com-
pared to an HNHB spectrum recorded with the experiment of
Madsen et al’,(T = 37 ms), the average sensitivity was improved
1.4-fold, with a standard deviation €f0.4. On the other hand,
the HNCA experiment, recorded witfT2= 25.6 ms, was 525%
less sensitive than a standdid decoupled HNCA experiment
recorded with identical delays, water flip-back and WATER-
GATE, but without sensitivity enhancemetig1415> The HNCA
experiment of Figure 1c and related spin-state selective “out-and-
back” type experiments would be attractive at higher magnetic
fields.
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Note Added in Proof. A very similar TROSY scheme has
recently been published: Pervushin, K. V.; Wider, G.;tfich,
K. J. Biomol. NMR1998 12, 345-348.

Supporting Information Available: Product operator analysis for
SG-TROSY experiments selecting different multiplet components (1 page,
print/PDF). See any current masthead page for ordering information and
Web access instructions.
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